Abstract
Abstract For a bridge decomposition of a link in the $3$-sphere, we define the Goeritz group to be the group of isotopy classes of orientation-preserving homeomorphisms of the $3$-sphere that preserve each of the bridge sphere and link setwise. After describing basic properties of this group, we discuss the asymptotic behavior of the minimal pseudo-Anosov entropies. We then give an application to the asymptotic behavior of the minimal entropies for the original Goeritz groups of Heegaard splittings of the $3$-sphere and the real projective space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.