Abstract

PurposeTo develop and evaluate a novel 3D Cartesian sampling scheme which is well suited for time-resolved 3D MRI using parallel imaging and compressed sensing. MethodsThe proposed sampling scheme, termed GOlden-angle CArtesian Randomized Time-resolved (GOCART) 3D MRI, is based on golden angle (GA) Cartesian sampling, with random sampling of the ky-kz phase encode locations along each Cartesian radial spoke. This method was evaluated in conjunction with constrained reconstruction of retrospectively and prospectively undersampled in-vivo dynamic contrast enhanced (DCE) MRI data and simulated phantom data. ResultsIn in-vivo retrospective studies and phantom simulations, images reconstructed from phase encodes defined by GOCART were equal to or superior to those with Poisson disc or GA sampling schemes. Typical GOCART sampling tables were generated in <100ms. GOCART has also been successfully utilized prospectively to produce clinically valuable whole-brain DCE-MRI images. ConclusionGOCART is a practical and efficient sampling scheme for time-resolved 3D MRI. It shows great potential for highly accelerated DCE-MRI and is well suited to modern reconstruction methods such as parallel imaging and compressed sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.