Abstract
Enterohemorrhagic Escherichia coli and related food and waterborne pathogens pose significant threats to human health. These attaching/effacing microbes infect the apical surface of intestinal epithelial cells (IEC), causing severe diarrheal disease. Colonizing the intestinal luminal surface helps segregate these microbes from most host inflammatory responses. Based on studies using Citrobacter rodentium, a related mouse pathogen, we speculate that hosts rely on immune-mediated changes in IEC, including goblet cells to defend against these pathogens. These changes include a CD4+ T cell-dependent increase in IEC proliferation to replace infected IEC, as well as altered production of the goblet cell-derived mucin Muc2. Another goblet cell mediator, REsistin-Like Molecule (RELM)-β is strongly induced within goblet cells during C. rodentium infection, and was detected in the stool as well as serum. Despite its dramatic induction, RELM-β’s role in host defense is unclear. Thus, wildtype and RELM-β gene deficient mice (Retnlb -/-) were orally infected with C. rodentium. While their C. rodentium burdens were only modestly elevated, infected Retnlb -/- mice suffered increased mortality and mucosal ulceration due to deep pathogen penetration of colonic crypts. Immunostaining for Ki67 and BrDU revealed Retnlb -/- mice were significantly impaired in infection-induced IEC hyper-proliferation. Interestingly, exposure to RELM-β did not directly increase IEC proliferation, rather RELM-β acted as a CD4+ T cell chemoattractant. Correspondingly, Retnlb -/- mice showed impaired CD4+ T cell recruitment to their infected colons, along with reduced production of interleukin (IL)-22, a multifunctional cytokine that directly increased IEC proliferation. Enema delivery of RELM-β to Retnlb -/- mice restored CD4+ T cell recruitment, concurrently increasing IL-22 levels and IEC proliferation, while reducing mucosal pathology. These findings demonstrate that RELM-β and goblet cells play an unexpected, yet critical role in recruiting CD4+ T cells to the colon to protect against an enteric pathogen, in part via the induction of increased IEC proliferation.
Highlights
The enteric bacterial pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are important causes of infectious diarrhea
Rather than directly causing epithelial cell proliferation, we found REsistin-Like Molecule (RELM)-β instead recruited T lymphocytes to the infected intestine
The T lymphocytes produced the cytokine interleukin-22, which directly increased epithelial cell proliferation. These findings indicate that epithelial/goblet cells play a critical role in orchestrating the host response to an intestinal pathogen, by recruiting T lymphocytes and by promoting epithelial proliferation to limit the intestinal damage suffered during infection
Summary
The enteric bacterial pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are important causes of infectious diarrhea. These food and waterborne pathogens infect intestinal epithelial cells (IEC) using a Type III secretion system (T3SS) [1]. Their infection leads to characteristic attaching and effacing (A/E) lesions on IEC, as well as diarrhea and transient enteritis or colitis in humans [1]. The efficacy of IECdriven responses in clearing these pathogens is unclear, raising the question of whether infected hosts promote IEC responses that help the host “tolerate” these infections, by limiting intestinal tissue damage to ensure the host’s survival
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.