Abstract
This paper discusses the breakup of capillary jets of dilute polymer solutions and the dynamics associated with the transition from dripping to jetting. High-speed digital video imaging reveals a new scenario of transition and breakup via periodic growth and detachment of large terminal drops. The underlying mechanism is discussed and a basic theory for the mechanism of breakup is also presented. The dynamics of the terminal drop growth and trajectory prove to be governed primarily by mass and momentum balances involving capillary, gravity and inertial forces, whilst the drop detachment event is controlled by the kinetics of the thinning process in the viscoelastic ligaments that connect the drops. This thinning process of the ligaments that are subjected to a constant axial force is driven by surface tension and resisted by the viscoelasticity of the dissolved polymeric molecules. Analysis of this transition provides a new experimental method to probe the rheological properties of solutions when minute concentrations of macromolecules have been added.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.