Abstract

Humans survive in environments that contain a vast quantity and variety of visual information. All items of perceived visual information must be represented within a limited number of brain networks. The human brain requires mechanisms for selecting only a relevant fraction of perceived information for more in-depth processing, where neural representations of that information may be actively maintained and utilized for goal-directed behavior. Object-based attention is crucial for goal-directed behavior and yet remains poorly understood. Thus, in the study we investigate how neural representations of visual object information are guided by selective attention. The magnitude of activation in human extrastriate cortex has been shown to be modulated by attention; however, object-based attention is not likely to be fully explained by a localized gain mechanism. Thus, we measured information coded in spatially distributed patterns of brain activity with fMRI while human participants performed a task requiring selective processing of a relevant visual object category that differed across conditions. Using pattern classification and spatial correlation techniques, we found that the direction of selective attention is implemented as a shift in the tuning of object-based information representations within extrastriate cortex. In contrast, we found that representations within lateral prefrontal cortex (PFC) coded for the attention condition rather than the concrete representations of object category. In sum, our findings are consistent with a model of object-based selective attention in which representations coded within extrastriate cortex are tuned to favor the representation of goal-relevant information, guided by more abstract representations within lateral PFC.

Highlights

  • Humans survive in environments that contain a vast quantity and variety of visual information

  • We focus on identifying the neural mechanisms underlying object-based selective attention

  • In order to better understand the neural mechanisms of selective information processing, we investigated the modification of visual networks to favor the representation of goal-relevant information during working memory, and putative mechanisms of goal-based guidance of the selection process involving lateral prefrontal cortex (PFC)

Read more

Summary

Introduction

Humans survive in environments that contain a vast quantity and variety of visual information. Information in the visual world may be parsed as relevant or non-relevant based on any number of different possible divisions. Relevant visual information may be determined by properties such as a particular spatial location or a specific object. The same location or object in our visual world may differ in its relevance depending on the context of the situation. In one moment, a tourist may be interested in learning the faces of fellow tour members. Later she may be more interested in identifying scenic views for photo-taking opportunities. What neural mechanisms mediate selective attention to relevant visual information?

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call