Abstract

Goals provide a high-level abstraction of an agent’s objectives and guide its behavior in complex environments. As agents become more intelligent, it is necessary to ensure that the agent’s goals are aligned with the goals of the agent designers to avoid unexpected or unwanted agent behavior. In this work, we propose using Goal Net, a goal-oriented agent modelling methodology, as a way for agent designers to incorporate their prior knowledge regarding the subgoals an agent needs to achieve in order to accomplish an overall goal. This knowledge is used to guide the agent’s learning process to train it to achieve goals in dynamic environments where its goal may change between episodes. We propose a model that integrates a Goal Net model and hierarchical reinforcement learning. A high-level goal selection policy selects goals according to a given Goal Net model and a low-level action selection policy selects actions based on the selected goal, both of which use deep neural networks to enable learning in complex, high-dimensional environments. The experiments demonstrate that our method is more sample efficient and can obtain higher average rewards than other related methods that incorporate prior human knowledge in similar ways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.