Abstract

Recent work in feature-based classification has focused on nonparametric techniques that can classify instances even when the underlying feature distributions are unknown. The inference algorithms for training these techniques, however, are designed to maximize the accuracy of the classifier, with all errors weighted equally. In many applications, certain errors are far more costly than others, and the need arises for nonparametric classification techniques that can be trained to optimize task-specific cost functions. This correspondence reviews the linear machine decision tree (LMDT) algorithm for inducing multivariate decision trees, and shows how LMDT can be altered to induce decision trees that minimize arbitrary misclassification cost functions (MCF's). Demonstrations of pixel classification in outdoor scenes show how MCF's can optimize the performance of embedded classifiers within the context of larger image understanding systems.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.