Abstract

This paper analyzes the performance of the Go with the Winners algorithm (GWTW) of Aldous and Vazirani [1] on random instances of the clique problem. In particular, we consider the uniform distribution on the set of all graphs with n ∈ IN vertices. We prove a lower bound of nω(log n) and a matching upper bound on the time needed by GWTW to find a clique of size (1 + ∈) log n (for any constant ∈ > 0). We extend the lower bound result to other distributions, under which graphs are guaranteed to have large cliques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.