Abstract
We describe a general strategy for sampling configurations from a given distribution, not based on the standard Metropolis (Markov chain) strategy. It uses the fact that nontrivial problems in statistical physics are high dimensional and often close to Markovian. Therefore, configurations are built up in many, usually biased, steps. Due to the bias, each configuration carries its weight which changes at every step. If the bias is close to optimal, all weights are similar and importance sampling is perfect. If not, “population control” is applied by cloning/killing partial configurations with too high/low weight. This is done such that the final (weighted) distribution is unbiased. We apply this method (which is also closely related to diffusion type quantum Monte Carlo) to several problems of polymer statistics, reaction-diffusion models, sequence alignment, and percolation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.