Abstract

Lifelong learning is a long-standing aim for artificial agents that act in dynamic environments in which an agent needs to accumulate knowledge incrementally without forgetting previously learned representations. Contemporary methods for incremental learning from images are predominantly based on frame-based data recorded by conventional shutter cameras. We investigate methods for learning from data produced by event cameras and compare techniques to mitigate forgetting while learning incrementally. We propose a model that is composed of both, feature extraction and incremental learning. The feature extractor is utilized as a self-supervised sparse convolutional neural network that processes event-based data. The incremental learner uses a habituation-based method that works in tandem with other existing techniques. Our experimental results show that the combination of different existing techniques with our proposed habituation-based method can help avoid catastrophic forgetting even more, while learning incrementally from the features provided by the extraction module.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.