Abstract

Many types of genodermatosis exist, with numerous modes of transmission. The development of molecular genetic methods, in particular the most recent sequencing techniques, can be used to identify an increasing number of genes involved in these forms of genodermatosis while providing confirmation or more details regarding clinical diagnosis. Thanks to this approach, it is possible to determine risk of recurrence and to formulate an antenatal strategy. These technologies have led to improved molecular definition and to a better understanding of the physiopathological mechanisms involved in different genodermatoses such as bullous epidermolysis, keratinisation disorders, pigmentation disorders, potentially tumoral conditions, and epidermal and pilar dysplasia. The large amount of information provided by high-throughput sequencing makes it possible to study modifying genes as well as genotype-phenotype correlations. However, this genetic information in its turn poses problems of interpretation and of control of the resulting data. The use of genetics in dermatology for the purposes of diagnosis or research requires a consultation to provide patients with information regarding the genetic tests involved and the potential consequences thereof for them and their families. Furthermore, with pangenomic approaches there is a higher probability of fortuitous discovery of abnormalities such as variants associated with risks predisposing to cancer or neurodegenerative disease. Collaboration between dermatologists and geneticists enables optimisation of patient management in terms of diagnosis and genetic counselling in the event of such rare diseases. Therapeutic applications are beginning to be developed. The scope of therapeutic application includes gene therapy, replacement therapy (enzyme therapy) and targeted therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call