Abstract

To solve the problem of data accuracy degradation of vehicle GNSS/INS integrated navigation systems when the GNSS signal is unavailable or there is a GNSS outage, this paper improves the existing GNSS/INS integration methodology for land vehicle navigation based on the AI method. First, a GNSS/INS integration methodology for land vehicle navigation based on position update architecture (PUA) using LightGBM regression for predicting the position of a vehicle during a GNSS outage is presented. It uses LightGBM to model the relationship between INS data and vehicle position changes. On-board INS and GNSS data are collected when the GNSS signal is available and are used to train the PUA-LightGBM model; in the event of a GNSS outage, INS data are used as the input to the PUA-LightGBM to predict the change in vehicle position. Second, a vehicle navigation data acquisition system was designed for model validation. This included a self-developed GNSS/INS integrated navigation system and a Novatel pwrpak7-e1 GNSS/INS integrated navigation system for data acquisition on six road segments. Finally, the collected data were used for machine learning training of the PUA-LightGBM model and the existing PUA-RandomForest model. As a result, the PUA-LightGBM predicts the vehicle position with less error in the event of a GNSS outage and takes less time to train. It was also demonstrated that by allowing the model to be dynamically trained or updated while the vehicle is moving the PUA-LightGBM could adapt perfectly to the predictions of vehicle position changes in different complex road segments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.