Abstract

A new method for simulating Global Navigation Satellite System-Reflectometry (GNSS-R) delay-Doppler maps (DDMs) of a tsunami-dominant sea surface is presented. In this method, the bistatic scattering Z-V model, the sea surface mean square slope model of Cox and Munk, and the tsunami-induced wind perturbation model are employed. The feasibility of the Cox and Munk model under a tsunami scenario is examined by comparing the Cox and Munk model based scattering coefficient with the Jason-1 measurement. A good consistency between these two results is obtained with a correlation coefficient of 0.93. After confirming the applicability of the Cox and Munk model for a tsunami-dominated sea, this study provides the simulations of the scattering coefficient distribution and the corresponding DDMs of a fixed region of interest before and during the tsunami. In the final analysis, by subtracting the simulation results that are free of tsunami from those with presence of tsunami, the tsunami-induced variations in scattering coefficients and DDMs can be clearly observed. As a result, the tsunami passage can be readily interpreted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.