Abstract

The access and the use of the global navigation satellite system (GNSS) pseudo-range and carrier-phase measurements mobile devices as smartphones and tablets with an Android operating system has transformed the concept of accurate positioning with mobile devices. In this work, the comparison of positioning performances obtained with a smartphone and an external mass-market GNSS receiver both in real-time and post-processing is made. Particular attention is also paid to accuracy and precision of positioning results, also analyzing the possibility of estimating the phase ambiguities as integer values (fixed positioning) that it is still challenging for mass-market devices. The precisions and accuracies obtained with the mass-market receiver were about 5 cm and 1 cm both for real-time and post-processing solutions, respectively, while those obtained with a smartphone were slightly worse (few meters in some cases) due to the noise of its measurements.

Highlights

  • The improvement is allowed by the quality of the global navigation satellite system (GNSS) signals, the modern infrastructure dedicated to GNSS positioning (e.g., CORS, network, network real-time kinematic (NRTK), etc.), and by the increasing interest due to user communities and big players in the use of these technologies for high-quality positioning

  • It is strongly demonstrated that the quality of the signals collected using these technologies is completely able to reach good positioning

  • We have presented the results obtained with only one frequency. This is not expected to be the same concerning the performance of all smartphones, especially, because, in 2018, the first smartphone with a dual-frequency multi-constellation GNSS receiver was released (Xiaomi Mi8)

Read more

Summary

Introduction

It is used for calling and to navigate to destinations and sometimes to share their location. To devise a successful outdoor navigation solution, it is important to understand the quality and accuracy of smartphones’ integrated sensors [3]. Using smartphone can provide good accuracy using assisted GNSS (A-GNSS) systems, which can obtain the required data from other GNSS permanent stations or from an internet-connected server [4]. In both cases, it is mandatory to have access to GNSS raw measurements, as pseudo ranges and carrier-phase

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.