Abstract

Multipath and jamming interference affects the accuracy, availability, and continuity of global navigation satellite systems. The U.S. Global Positioning System and the Russian Global'naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) are being joined by the European Galileo and the Chinese BeiDou. An increasing number of satellites in multiple constellations enable users to use high-mask-angle antennas (HMAAs) to mitigate interference signals coming from a low-elevation angle. This paper studies the optimal antenna mask angle that maximizes the suppression of interference but still maintains the performance of a single constellation with a low-mask-angle antenna. This paper first proves a novel lower bound on the expectation of dilution of precision (DOP) and derives closed-form formulas that relate the lower bound to the antenna mask angle and the number of satellites. Then, through extensive simulations, a variety of optimal mask angles are obtained with respect to different constellation settings, different DOP metrics, and different assumptions of range accuracy. The numerical results highly agree with our theory. Both of them show that two constellations can match the performance of one constellation with a 5 $^{\circ}$ –14 $^{\circ} $ higher mask, and three constellations can match the performance of one constellation with an 11 $^{\circ}$ –23 $^{\circ} $ higher mask, depending on the DOP metric and the range error model used. The numerical results also show that using HMAAs is more beneficial to users interested in positioning accuracy than to users interested in time transfer accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.