Abstract

Global navigation satellite systems (GNSS) are extensively utilized for military and civilian applications. Unfortunately, because of the signal weakness, GNSS is susceptible to interference, fading, and jamming, which reduces the position accuracy. Therefore, it would be beneficial to have a simple and highly accurate model for detecting the jamming signals to improve the GNSS receiver accuracy. In this paper, we propose a hybrid deep learning (DL) model for predicting jamming signals. Initially, we utilize a feature selection algorithm that combines mutual information (MI) with the minimal redundancy maximum relevance (mRMR) technique to identify the most crucial features. Subsequently, the model undergoes training using a soft attention-double-layer bidirectional long short-term memory (A-DBiLSTM) model. This particular model has shown outstanding performance in comparison to other DL models when applied to datasets collected from both kinematic and static jamming scenarios. To assess the effectiveness and efficiency of the proposed MI feature selection algorithm, we evaluate its performance through the calculation of confusion matrices and conducting numerical simulations. The simulation results of the A-DBiLSTM model demonstrate higher accuracy, precision, recall, and F1Score\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathrm {F1_{Score}}$$\\end{document} of 98.82%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$98.82\\%$$\\end{document}, 98.4%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$98.4\\%$$\\end{document}, 98.68%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$98.68\\%$$\\end{document}, and 98.36%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$98.36\\%$$\\end{document}, respectively. By employing the MI feature selection algorithm, dimensionality reduction is achieved. Moreover, the MI feature selection algorithm reduces 19%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$19\\%$$\\end{document} of the learning time with almost the same accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call