Abstract
Global navigation satellite system (GNSS) signals are vulnerable to radio frequency interference (RFI) and spoofing. RFI detection has become trivial with many detection algorithms available and built into GNSS receivers; this is not the case with spoofing. GNSS spoofing can involve generating false GNSS signals with one or more altered components of GNSS satellite transmissions: radio frequency (RF) carrier, pseudorandom noise codes, and/or the broadcast navigation messages. We present GNSS interferometric reflectometry (GNSS-IR) signature-based defense: a new methodology to defend wireless space-based positioning, navigation, and timing (PNT) transmissions against spoofing by leveraging existing, fixed GNSS receivers used in GNSS-dependent critical infrastructure and key resource sectors. GNSS-IR signature-enabled defense provides spoofing and RFI detection without any changes to existing architecture by conducting input validation of GNSS receiver observables against the generated GNSS-IR truth calibration signatures. This paper includes an overview of the theory, methodology, and results of live-sky signature variability experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.