Abstract

Abstract. The main factors affecting the error of Doppler velocity measurement mainly come from the measurement errors of GNSS data, influence of different motion states on GNSS velocity measurement and the noise of different receiver types. To improve the precision of GNSS velocity estimation, an algorithm of adaptive robust Kalman filter based on the PDOP was put forward. PDOP value as well as the number of satellite in each epoch are used as a criterion in the velocity processing. While the PDOP value is greater than the threshold value, which means the observation accuracy is low, then the robust Kalman filter based on IGG – III scheme is introduced. While the PDOP value is between the threshold values, which means the observation precision is normal, adaptive factor could be determined normally, and the single-factor three-stage adaptive model is applied for Kalman filtering. If the above two conditions are not consistent, it indicates that the prediction accuracy of the local epoch satellite is high, and Kalman filtering can be directly used. Through the experiment of shipborne GNSS velocity measurement, it was proved that comparing with conventional least square, the algorithm based on the adaptive robust Kalman filtering can improve the accuracy and stability of the GNSS velocity determination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.