Abstract

Using the Global Navigation Satellite System (GNSS) differenced total electron content (dTEC) series, the traveling ionosphere disturbances (TIDs) of 22 typhoons registered in Taiwan/Japan between 2013 and 2016 were studied. The horizontal speed of the first TID during a typhoon landing can be estimated by a two-station method with the ionosphere anomaly indicator in total electron count units (TECUs) (|dTEC| ≥ 0.15 TECU). The horizontal speed of the TIDs was from 155 to 210 m/s and with an average speed of 168.70 m/s. The estimated TID speeds of Typhoons Soudelor (205.93 m/s) and Megi (158.47 m/s) are not consistent with each other, even though they had very similar trajectories when cross through Taiwan Island. Moreover, the propagation velocity of the typhoon ionospheric anomaly showed a significant positive correlation ( r = 0.78, α = 0.05) with the change rate of the typhoon central air pressure and a negative correlation ( r = -0.52, α = 0.05) with the central pressure before landing. Gravity waves were generated by land friction, terrain blocking, and strong wind shear transport energy into the atmosphere from the near surface to the mesosphere and thermosphere, which is the main cause of ionosphere disturbances during typhoon landing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.