Abstract

Commercial gonadotropin-releasing hormone (GnRH) antagonists differ by 1–2 amino acids and are used to inhibit gonadotropin production during assisted reproduction technologies (ART). In this study, potencies of three GnRH antagonists, Cetrorelix, Ganirelix and Teverelix, in inhibiting GnRH-mediated intracellular signaling, were compared in vitro. GnRH receptor (GnRHR)-transfected HEK293 and neuroblastoma-derived SH-SY5Y cell lines, as well as mouse pituitary LβT2 cells endogenously expressing the murine GnRHR, were treated with GnRH in the presence or absence of the antagonist. We evaluated intracellular calcium (Ca2+) and cAMP increases, cAMP-responsive element binding-protein (CREB) and extracellular-regulated kinase 1 and 2 (ERK1/2) phosphorylation, β-catenin activation and mouse luteinizing-hormone β-encoding gene (Lhb) transcription by bioluminescence resonance energy transfer (BRET), Western blotting, immunostaining and real-time PCR as appropriate. The kinetics of GnRH-induced Ca2+ rapid increase revealed dose-response accumulation with potency (EC50) of 23 nM in transfected HEK293 cells, transfected SH-SY5Y and LβT2 cells. Cetrorelix inhibited the 3 × EC50 GnRH-activated calcium signaling at concentrations of 1 nM–1 µM, demonstrating higher potency than Ganirelix and Teverelix, whose inhibitory doses fell within the 100 nM–1 µM range in both transfected HEK293 and SH-SY5Y cells in vitro. In transfected SH-SY5Y, Cetrorelix was also significantly more potent than other antagonists in reducing GnRH-mediated cAMP accumulation. All antagonists inhibited pERK1/2 and pCREB activation at similar doses, in LβT2 and transfected HEK293 cells treated with 100 nM GnRH. Although immunostainings suggested that Teverelix could be less effective than Cetrorelix and Ganirelix in inhibiting 1 µM GnRH-induced β-catenin activation, Lhb gene expression increase occurring upon LβT2 cell treatment by 1 µM GnRH was similarly inhibited by all antagonists. To conclude, this study has demonstrated Cetrorelix-, Ganirelix- and Teverelix-specific biased effects at the intracellular level, not affecting the efficacy of antagonists in inhibiting Lhb gene transcription.

Highlights

  • Gonadotropin releasing hormone (GnRH) is secreted by hypothalamic gonadotropin-releasing hormone (GnRH)-expressing neurons and regulates mammalian reproductive functions

  • Cetrorelix, Ganirelix and Teverelix are characterized by different amino acid structures which result in compound-specific differential potencies in inhibiting GnRH-mediated early signaling

  • Their action may vary depending on cell type and GnRH receptor (GnRHR) expression levels, Cetrorelix displays the highest efficacy in depleting intracellular Ca2+ and cAMP increase, while Teverelix has the lowest potency in depleting hormone-induced β-catenin activation and all three antagonists show similar effects on phospho-protein activation

Read more

Summary

Introduction

Gonadotropin releasing hormone (GnRH) is secreted by hypothalamic GnRH-expressing neurons and regulates mammalian reproductive functions. It is a decapeptide released in a pulsatile fashion into the hypophyseal portal blood system and acts on GnRH receptor (GnRHR)-expressing gonadotrope cells of the anterior pituitary, triggering the synthesis and secretion of the luteinizing (LH) and follicle-stimulating (FSH) hormones [1,2,3]. CAMP production may be induced by alternative pathways involving the Gαq/11 protein and specific PKC isoforms [17], implementing the complexity of GnRHR signaling signature. All of these intracellular events precede the expression of LHB and FSHB target genes [13,18]. Another target of GnRH-mediated signal transduction is β-catenin activation [19,20]. β-catenin acts as a dual-function protein, participating in both cell-adhesion, as a member of the adherens junction, and in the regulation of LHB and Wnt-target gene transcription [21,22,23] after translocation into the cell nucleus [19,24]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.