Abstract

AbstractReal-world knowledge graphs (KGs) are usually incomplete—that is, miss some facts representing valid information. So, when applied to such KGs, standard symbolic query engines fail to produce answers that are expected but not logically entailed by the KGs. To overcome this issue, state-of-the-art ML-based approaches first embed KGs and queries into a low-dimensional vector space, and then produce query answers based on the proximity of the candidate entity and the query embeddings in the embedding space. This allows embedding-based approaches to obtain expected answers that are not logically entailed. However, embedding-based approaches are not applicable in the inductive setting, where KG entities (i.e., constants) seen at runtime may differ from those seen during training. In this paper, we propose a novel neuro-symbolic approach to query answering over incomplete KGs applicable in the inductive setting. Our approach first symbolically augments the input KG with facts representing parts of the KG that match query fragments, and then applies a generalisation of the Relational Graph Convolutional Networks (RGCNs) to the augmented KG to produce the predicted query answers. We formally prove that, under reasonable assumptions, our approach can capture an approach based on vanilla RGCNs (and no KG augmentation) using a (often substantially) smaller number of layers. Finally, we empirically validate our theoretical findings by evaluating an implementation of our approach against the RGCN baseline on several dedicated benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.