Abstract

In high-performance three-dimensional Integrated Circuits (3D ICs), clock networks consume a large portion of the full-chip power. However, no previous 3D IC work has ever optimized 3D clock networks for both power and performance simultaneously, which results in sub-optimal 3D designs. To overcome this issue, in this article, we propose a GNN-based flip-flop clustering algorithm that merges single-bit flip-flops into multi-bit flip-flops in an unsupervised manner, which jointly optimizes the power and performance metrics of clock networks. Moreover, we integrate our algorithm into the state-of-the-art 3D physical design flow and verify the integration, which leads to a better 3D full-chip design. Experimental results on eight industrial benchmarks demonstrate that the algorithm achieves improvements up to 18% in total power and 8.2% in performance over the state-of-the-art 3D flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.