Abstract
We consider the semilinear elliptic PDE Δ u + f( λ, u) = 0 with the zero-Dirichlet boundary condition on a family of regions, namely stadions. Linear problems on such regions have been widely studied in the past. We seek to observe the corresponding phenomena in our nonlinear setting. Using the Gradient Newton Galerkin Algorithm (GNGA) of Neuberger and Swift, we document bifurcation, nodal structure, and symmetry of solutions. This paper provides the first published instance where the GNGA is applied to general regions. Our investigation involves both the dimension of the stadions and the value λ as parameters. We find that the so-called crossings and avoided crossings of eigenvalues as the dimension of the stadions vary influences the symmetry and variational structure of nonlinear solutions in a natural way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.