Abstract

Context: Pseudohypoparathyroidism type Ia (PHP1A) is caused by inactivating mutations involving GNAS exons 1–13, encoding the alpha-subunit of the stimulatory G protein (Gsα). Particularly PHP1A, but also other disorders involving the Gsα-cAMP-signaling pathway, have been associated with early-onset obesity. Thus, patients with mutations in the genes encoding PDE4D and PRKAR1A can also be obese. Furthermore, epigenetic GNAS changes, as in pseudohypoparathyroidism type Ib (PHP1B), can lead to excessive weight.Objective: Search for genetic variants in GNAS, PDE4D, and PRKAR1A and for methylation alterations at the GNAS locus in Finnish subjects with isolated severe obesity before age 10 years.Methods: Next generation sequencing to identify pathogenic variants in the coding exons of GNAS, PDE4D, and PRKAR1A; Multiplex Ligation-dependent Probe Amplification (MLPA) and methylation-sensitive MLPA (MS-MLPA) to search for deletions in GNAS and STX16, and for epigenetic changes at the four differentially methylated regions (DMR) within GNAS.Results: Among the 88 subjects (median age 13.8 years, median body mass index Z-score +3.9), we identified one rare heterozygous missense variant of uncertain significance in the XL exon of GNAS in a single patient. We did not identify clearly pathogenic variants in PDE4D and PRKAR1A, and no GNAS methylation changes were detected by MS-MLPA.Conclusions: Our results suggest that coding GNAS mutations or methylation changes at the GNAS DMRs, or coding mutations in PDE4D and PRKAR1A are not common causes of isolated childhood obesity in Finland.

Highlights

  • Pseudohypoparathyroidism (PHP) and related disorders have been associated with early-onset obesity [1, 2]

  • These diseases, which can present with highly variable clinical findings [3], are caused by a defect in the stimulatory G protein-cAMPsignaling pathway

  • Exons 1–13 encode the alpha-subunit of the stimulatory G protein (Gsα), a signaling protein mediating the functions of several hormones that require the second messenger cAMP down-stream of their cognate receptors [3]

Read more

Summary

Introduction

Pseudohypoparathyroidism (PHP) and related disorders have been associated with early-onset obesity [1, 2] These diseases, which can present with highly variable clinical findings [3], are caused by a defect in the stimulatory G protein-cAMPsignaling pathway. Mutations involving exons 1–13 of the maternal GNAS allele underlie pseudohypoparathyroidism type 1A (PHP1A) in which patients develop resistance to PTH in the proximal renal tubules leading to elevated plasma PTH levels, hypocalcemia and hyperphosphatemia, and often resistance to multiple other hormones. Patients with PHP1A show clinical features of Albright’s hereditary osteodystrophy (AHO), including short stature, brachydactyly, early-onset obesity, neurodevelopmental defects and subcutaneous ossifications. Inactivating mutations located on the paternal GNAS allele cause pseudopseudohypoparathyroidism (PPHP) characterized in most patients by several AHO features, but no hormonal resistance, no obesity, and no intellectual challenges. Methylation defects at GNAS exon A/B alone, or at several GNAS DMRs, are observed in pseudohypoparathyroidism type 1B (PHP1B), characterized by resistance to PTH and frequently TSH, but infrequently by AHO features [3]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call