Abstract

Phytophthora root and stem rot, a destructive disease of soybean [Glycine max (L.) Merr.], is caused by the oomycete Phytophthora sojae. However, how the disease resistance mechanisms of soybean respond to P. sojae infection remains unclear. Previously, we showed that GmWRKY31, which interacts with a sucrose non-fermenting-1(SNF1)-related protein kinase (SnRK), enhances resistance to P. sojae in soybean. Here, we report that the membrane-localized SnRK GmSnRK1.1 is involved in the soybean host response to P. sojae. The overexpression of GmSnRK1.1 (GmSnRK1.1-OE) increased soybean resistance to P. sojae, and the RNA interference (RNAi)-mediated silencing of GmSnRK1.1 (GmSnRK1.1-R) reduced resistance to P. sojae. Moreover, the activities and transcript levels of the antioxidant enzymes superoxide dismutase and peroxidase were markedly higher in the GmSnRK1.1-OE transgenic soybean plants than in the wild type (WT), but were reduced in the GmSnRK1.1-R plants. Several isoflavonoid phytoalexins related genes GmPAL, GmIFR, Gm4CL and GmCHS were significantly higher in “Suinong 10” and GmSnRK1.1-OE lines than these in “Dongnong 50,” and were significantly lower in GmSnRK1.1-R lines. In addition, the accumulation of salicylic acid (SA) and the expression level of the SA biosynthesis-related gene were significantly higher in the GmSnRK1.1-OE plants than in the WT and GmSnRK1.1-R plants, moreover, SA biosynthesis inhibitor treated GmSnRK1.1-R lines plants displayed clearly increased pathogen biomass compared with H2O-treated plants after 24 h post-inoculation. These results showed that GmSnRK1.1 positively regulates soybean resistance to P. sojae, potentially functioning via effects on the expression of SA-related genes and increased accumulation of SA.

Highlights

  • The sucrose non-fermenting-1(SNF1)-related protein kinases (SnRKs) are key factors in the regulation of energy metabolism, sugar signaling, seed germination, and seedling growth in plants, in addition to stress signaling in a diverse array of eukaryotes (Halford and Hey, 2009; Hey et al, 2010; Coello et al, 2011; Tsai and Gazzarrini, 2014)

  • Using yeast two-hybrid assays, GmWRKY31 was found to interact with GmSnRK1.1 (Figure 1A), which was further confirmed using a Bimolecular Fluorescence Complementation (BiFC) assay demonstrating that GmSnRK1.1 can interact with GmWRKY31 in the nuclei of Arabidopsis protoplast cells (Figure 1C)

  • Phylogenetic tree and alignment analyses revealed that GmSnRK1.1 shares 67.91–93.02% identity in overall amino acid sequence with its other plant species homologs, including Lotus japonicus LjSnRK (BAD95888), Manihot esculenta MeSnRK (XP_021604368), Fragaria vesca FvSnRK (XP_004304271), Cucumis sativus CsSnRK (XP_004145003), Vitis vinifera VvSnRK (XM_002283963.1), Cucumis melo CmSnRK (XP_008460108), Pyrus bretschneideri PbSnRK (XP_009360590), Populus trichocarpa PtSnRK (XP_002306053), Morus notabilis MnSnRK (XP_024016886), Vicia faba VfSnRK (AJ971809.1), Pisum sativum PsSnRK (CAI96819.1), Nicotiana attenuate NaSnRK (AAS18877), Populus euphratica PeSnRK (XP_011010304), Arabidopsis thaliana AtSnRK (M93023.1), Daucus carota DcSnRK (XP_017242374), Sorghum bicolor SbSnRK (EF544393.1), Zea mays ZmSnRK (AY486125.1), Solanum tuberosum StSnRK (CAA65244.1), Solanum lycopersicum SlSnRK (NP_001234325.1), and GmSnRK1.1 has the highest similarity with LjSnRK (Supplementary Figures S1B,C)

Read more

Summary

Introduction

The sucrose non-fermenting-1(SNF1)-related protein kinases (SnRKs) are key factors in the regulation of energy metabolism, sugar signaling, seed germination, and seedling growth in plants, in addition to stress signaling in a diverse array of eukaryotes (Halford and Hey, 2009; Hey et al, 2010; Coello et al, 2011; Tsai and Gazzarrini, 2014). Under low-sugar conditions, Arabidopsis SnRK1 was triggered to phosphorylate and inactivate the INDETERMINATE DOMAIN (IDD)-containing transcription factor IDD8, thereby leading to delayed flowering (Jeong et al, 2015) These discoveries show that SnRK1 coordinates the responses to a wide array of abiotic stresses (Baena-González et al, 2007; Lee et al, 2009; Cho et al, 2012; Jeong et al, 2015). No systematic research on the disease-related roles of SnRK1 in another major crop species, soybean (Glycine max), has been reported

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call