Abstract

Soil salinity reduces soybean growth and yield. The recently identified GmSALT3 (Glycine max salt Tolerance-associated gene on chromosome 3) has the potential to improve soybean yields in salinized conditions. Here we evaluate the impact of GmSALT3 on soybean performance under saline or non-saline conditions. Three sets of near isogenic lines (NILs), with genetic similarity of 95.6–99.3% between each pair of NIL-T and NIL-S, were generated from a cross between two varieties 85–140 (salt-sensitive, S) and Tiefeng 8 (salt-tolerant, T) by using marker-assisted selection. Each NIL-T; 782-T, 820-T and 860-T, contained a common ~1000 kb fragment on chromosome 3 where GmSALT3 was located. We show that GmSALT3 does not contribute to an improvement in seedling emergence rate or early vigor under salt stress. However, when 12-day-old seedlings were exposed to NaCl stress, the NIL-T lines accumulated significantly less leaf Na+ compared with their corresponding NIL-S, while no significant difference of K+ concentration was observed between NIL-T and NIL-S; the magnitude of Na+ accumulation within each NIL-T set was influenced by the different genetic backgrounds. In addition, NIL-T lines accumulated less Cl- in the leaf and more in the root prior to any difference in Na+; in the field they accumulated less pod wall Cl- than the corresponding NIL-S lines. Under non-saline field conditions, no significant differences were observed for yield related traits within each pair of NIL-T and NIL-S lines, indicating there was no yield penalty for having the GmSALT3 gene. In contrast, under saline field conditions the NIL-T lines had significantly greater plant seed weight and 100-seed weight than the corresponding NIL-S lines, meaning GmSALT3 conferred a yield advantage to soybean plants in salinized fields. Our results indicated that GmSALT3 mediated regulation of both Na+ and Cl- accumulation in soybean, and contributes to improved soybean yield through maintaining a higher seed weight under saline stress.

Highlights

  • Salinity is a major abiotic stress that reduces crop productivity, with the extent of agricultural land salinization increasing due to climate change and poor land management (Takeda and Matsuoka, 2008)

  • We found that under non-saline field conditions near isogenic lines (NILs)-T lines had similar yield related traits compared to their related NILS lines (Figure 6A), indicating no yield penalty associated with the presence of GmSALT3 allele

  • Three sets of NILs differing at GmSALT3 locus were developed through marker-assisted selection, and used to evaluate the possible effect of GmSALT3 on ion accumulation and yield production

Read more

Summary

Introduction

Salinity is a major abiotic stress that reduces crop productivity, with the extent of agricultural land salinization increasing due to climate change and poor land management (Takeda and Matsuoka, 2008). To ensure food security into the future, crops with improved tolerance to salt stress will be required. To speed up the process of creating a new generation of stress tolerant elite crop lines, stress related genes should be used in pre-breeding research. The robustness of the stress related genes can evaluate in the field prior to the release of new varieties to farmers. Several significant gains in abiotic stress tolerance of crops have been made through manipulating their ion transport properties through such approaches (Schroeder et al, 2013). Wheat grain yield in saline fields was improved by up to 25% through the introduction of a root localized Na+ transporter via marker-assisted breeding (Munns et al, 2012)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.