Abstract
With the widespread use of Deep Learning (DL), the use of DL has increased to provide a solution to the problem of object recognition and classification. In addition to classifying many different types of objects, the Deep Metrics Learning(DML) technique is effective in classifying objects that are visually very similar to each other. In this study, a novel Relation Network (RN) based DML has been designed to classify objects in two different datasets we created. We distinguished groups of objects that had a high degree of similarity to each other. These objects have been categorized using few-shot learning(FSL) since they are quite similar to one another. The impact of changing the number of classes and samples in the database on the network’s performance has been studied. It is shown how the network’s accuracy varies depending on the N-way (number of classes) and K-shots (number of samples) combinations used in its design. Additionally, the performance of the network has improved by an average of 15% thanks to the contribution of the recently introduced geometric mean module to the RN in our study. The accuracy rate of our recommended RN in screw and spare parts datasets is 96.1% and 92.3%, respectively. The first dataset consists of 1800 screw images with 18 classes, while the second dataset consists of 4100 spare parts images with 20 classes. The effectiveness of our method is expressed by the two datasets that we have extensively experimentally studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.