Abstract

The GMRES method is a popular iterative method for the solution of large linear systems of equations with a nonsymmetric nonsingular matrix. This paper discusses application of the GMRES method to the solution of large linear systems of equations that arise from the discretization of linear ill-posed problems. These linear systems are severely ill-conditioned and are referred to as discrete ill-posed problems. We are concerned with the situation when the right-hand side vector is contaminated by measurement errors, and we discuss how a meaningful approximate solution of the discrete ill-posed problem can be determined by early termination of the iterations with the GMRES method. We propose a termination criterion based on the condition number of the projected matrices defined by the GMRES method. Under certain conditions on the linear system, the termination index corresponds to the “vertex” of an L-shaped curve.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.