Abstract

When GMRES [Y. Saad and M. H. Schultz, SIAM J. Sci. Statist. Comput.}, 7 (1986), pp. 856--869] is applied to streamline upwind Petrov--Galerkin (SUPG) discretized convection-diffusion problems, it typically exhibits an initial period of slow convergence followed by a faster decrease of the residual norm. Several approaches were made to understand this behavior. However, the existing analyses are solely based on the matrix of the discretized system and they do not take into account any influence of the right-hand side (determined by the boundary conditions and/or source term in the PDE). Therefore they cannot explain the length of the initial period of slow convergence which is right-hand side dependent. We concentrate on a frequently used model problem with Dirichlet boundary conditions and with a constant velocity field parallel to one of the axes. Instead of the eigendecomposition of the system matrix, which is ill conditioned, we use its orthogonal transformation into a block-diagonal matrix with nonsymmetric tridiagonal Toeplitz blocks and offer an explanation of GMRES convergence. We show how the initial period of slow convergence is related to the boundary conditions and address the question why the convergence in the second stage accelerates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.