Abstract

Linear dynamic mixed models are commonly used for continuous panel data analysis in economic statistics. There exists generalized method of moments (GMM) and generalized quasi-likelihood (GQL) inferences for binary and count panel data models, the GQL estimation approach being more efficient than the GMM approach. The GMM and GQL estimating equations for the linear dynamic mixed model can not, however, be obtained from the respective estimating equations under the nonlinear models for binary and count data. In this paper, we develop the GMM and GQL estimation approaches for the linear dynamic mixed models and demonstrate that the GQL approach is more efficient than the GMM approach, also under such linear models. This makes the GQL approach uniformly more efficient than the GMM approach in estimating the parameters of both linear and nonlinear dynamic mixed models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.