Abstract

Language identification (LID) in speech signals is an important classification task. In this paper Persian language verification is proposed and evaluated. The system is developed by using Gaussian mixture models as a basic system for tokenizing and a Neural Network as the backend processor. Gaussian Mixture Models can be utilized to model the distribution of feature vector in speech signals for classification. We gathered our language identification corpus from different Satellite TV channels. The results are presented for a system using the GMM Tokenizer in combining with Neural Network. The results of GMM-NN system compared with GMM-Tokenizer system. It is shown that using the Neural Network as the backend processor improves the results significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.