Abstract
When deep-learning classifiers try to learn new classes through supervised learning, they exhibit catastrophic forgetting issues. In this paper we propose the Gaussian Mixture Model - Incremental Learner (GMM-IL), a novel two-stage architecture that couples unsupervised visual feature learning with supervised probabilistic models to represent each class. The key novelty of GMM-IL is that between images and labels there is a bijective connection. New classes can be incrementally learnt using a small set of annotated images with no requirement for any previous training data. This enables the incremental addition of classes to a database, that can be indexed by visual features and reasoned over based on perception. Using Gaussian Mixture Models to represent the independent classes, we outperform a benchmark of an equivalent network with a Softmax head, obtaining increased accuracy for sample sizes smaller than 12 and increased weighted F1 score for 3 imbalanced class profiles in that sample range. This novel method enables new classes to be added to a system with only access to a few annotated images of the new class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.