Abstract
ABSTRACTThis paper proposes a GMM estimation framework for the SAR model in a system of simultaneous equations with heteroskedastic disturbances. Besides linear moment conditions, the proposed GMM estimator also utilizes quadratic moment conditions based on the covariance structure of model disturbances within and across equations. Compared with the QML approach, the GMM estimator is easier to implement and robust under heteroskedasticity of unknown form. We derive the heteroskedasticity-robust standard error for the GMM estimator. Monte Carlo experiments show that the proposed GMM estimator performs well in finite samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.