Abstract
We consider estimation of the structural vector autoregression (SVAR) by the generalized method of moments (GMM). Given non-Gaussian errors and a suitable set of moment conditions, the GMM estimator is shown to achieve local identification of the structural shocks. The optimal set of moment conditions can be found by well-known moment selection criteria. Compared to recent alternatives, our approach has the advantage that the structural shocks need not be mutually independent, but only orthogonal, provided they satisfy a number of co-kurtosis conditions that prevail under independence. According to simulation results, the finite-sample performance of our estimation method is comparable, or even superior to that of the recently proposed pseudo maximum likelihood estimators. The two-step estimator is found to outperform the alternative GMM estimators. An empirical application to a small macroeconomic model estimated on postwar United States data illustrates the use of the methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.