Abstract

Super-resolution (SR) is a technique to improve the resolution of an image from a sequence of input images or from a single image. As SR is an ill-posed inverse problem, it leads to many suboptimal solutions. Since modern depth cameras suffer from low-spatial resolution and are noisy, we present a Gaussian mixture model (GMM) based method for depth image super-resolution (SR). We train GMM from a set of high-resolution and low-resolution (HR-LR) synthetic training depth images to learn the relation between the HR and the LR patches in the form of covariance matrices. We use expectation-maximization (EM) algorithm to converge to an optimal solution. We show the promising results qualitatively and quantitatively in comparison to other depth image SR methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.