Abstract

Metabolism of surfactant protein (SP) A and dipalmitoylphosphatidylcholine (DPPC) was assessed in alveolar macrophages isolated from granulocyte-macrophage colony-stimulated factor (GM-CSF) gene-targeted [GM(-/-)] mice, wild-type mice, and GM(-/-) mice expressing GM-CSF under control of the SP-C promoter element (SP-C-GM). Although binding and uptake of (125)I-SP-A were significantly increased in alveolar macrophages from GM(-/-) compared with wild type or SP-C-GM mice, catabolism of (125)I-SP-A was markedly decreased in GM(-/-) mice. Association of [(3)H]DPPC with alveolar macrophages from GM(-/-), wild-type, and SP-C-GM mice was similar; however, catabolism of DPPC was markedly reduced in cells from GM(-/-) mice. Fluorescence-activated cell sorter analysis demonstrated decreased catabolism of rhodamine-labeled dipalmitoylphosphatidylethanolamine by alveolar macrophages from GM(-/-) mice. GM-CSF deficiency was associated with increased SP-A uptake by alveolar macrophages but with impaired surfactant lipid and SP-A degradation. These findings demonstrate the important role of GM-CSF in the regulation of alveolar macrophage lipid and SP-A catabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.