Abstract

Salt stress severely affects plant development and yield. Calcineurin B-like protein interacting protein kinases (CIPKs) play a crucial role in plant adaptation to environmental challenges. However, the biological functions of CIPKs in soybean remain poorly understood. Here, we identified GmCIPK21, a salt-responsive CIPK gene from soybean. Overexpression of GmCIPK21 in Arabidopsis and soybean hairy roots led to increased salt tolerance. The hairy roots with GmCIPK21 suppression by RNA interference exhibited salt-sensitive phenotypes. Further physiological analysis revealed that GmCIPK21 reduced the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and increased the activity of the antioxidant enzymes under salt stress. Additionally, GmCIPK21 was found to enhance the ABA sensitivity of transgenic plants. GmCIPK21 was also implicated in increasing the activation of antioxidant-, salt-, and ABA-related genes upon salt stress. Interestingly, GmCIPK21 interacted with GmCBL4, promoting the scavenging salt-induced reactive oxygen species (ROS). These results collectively suggested that GmCIPK21 affects ROS homeostasis and ABA response to improve salt tolerance in soybean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call