Abstract

We introduce GMAP, a standalone program for mapping and aligning cDNA sequences to a genome. The program maps and aligns a single sequence with minimal startup time and memory requirements, and provides fast batch processing of large sequence sets. The program generates accurate gene structures, even in the presence of substantial polymorphisms and sequence errors, without using probabilistic splice site models. Methodology underlying the program includes a minimal sampling strategy for genomic mapping, oligomer chaining for approximate alignment, sandwich DP for splice site detection, and microexon identification with statistical significance testing. On a set of human messenger RNAs with random mutations at a 1 and 3% rate, GMAP identified all splice sites accurately in over 99.3% of the sequences, which was one-tenth the error rate of existing programs. On a large set of human expressed sequence tags, GMAP provided higher-quality alignments more often than blat did. On a set of Arabidopsis cDNAs, GMAP performed comparably with GeneSeqer. In these experiments, GMAP demonstrated a several-fold increase in speed over existing programs. Source code for gmap and associated programs is available at http://www.gene.com/share/gmap http://www.gene.com/share/gmap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.