Abstract

Exposure of neonatal rats to a 5 Gy dose of X-irradiation induces permanent abnormalities in cerebellar cortex cytoarchitecture (disarrangement of Purkinje cells, reduction of thickness of granular cortex) and neurochemistry (late increase in noradrenaline levels), and motor function (ataxic gait). The neuroprotective effects of gangliosides have been demonstrated using a variety of CNS injuries, including mechanical, electrolytic, neurotoxic, ischemic, and surgical lesions. Here, we evaluated whether systemically administered GM1 ganglioside protects against the long-term CNS abnormalities induced by a single exposure to ionizing radiation in the early post-natal period. Thus, neonatal rats were exposed to 5 Gy X-irradiation, and subcutaneously injected with one dose (30 mg/kg weight) of GM1 on h after exposure followed by three daily doses. Both at post-natal days 30 and 90, gait and cerebellar cytoarchitecture in X-irradiated rats were significantly impaired when compared to age-matched controls. By contrast, both at post-natal days 30 and 90, gait in X-irradiated rats that were treated with GM1 was not significantly different from that in non-irradiated animals. Furthermore, at post-natal day 90, cerebellar cytoarchitecture was still well preserved in GM1-treated, X-irradiated animals. GM1 failed to modify the radiation-induced increase in cerebellar noradrenaline levels. Present data indicate that exogenous GM1, repeatedly administered after neonatal X-irradiation, produces a long-term radioprotection, demonstrated at both cytoarchitectural and motor levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.