Abstract

GM1 is a major brain ganglioside that exerts neurotrophic, neuroprotective and antineuroinflammatory effects. The aim of this study was to obtain insights into the antineuroinflammatory mechanisms of exogenous GM1 in lipopolysaccharide (LPS)-stimulated MG6 mouse transformed microglial cell line. First, we found that GM1 prevented the LPS-induced transformation of microglia into an amoeboid-like shape. GM1 treatment inhibited LPS-induced expression of inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), and proinflammatory cytokines such as TNF-α, IL-1β and IL-6 in MG6 cells. In LPS-treated mice, GM1 also reduced striatal microglia activation and attenuated COX-2 expression. Subsequent mechanistic studies showed that GM1 suppressed LPS-induced nuclear translocation of nuclear factor κB (NF-κB) and activator protein-1 (AP-1), two critical transcription factors responsible for the production of proinflammatory mediators. GM1 exhibited antineuroinflammatory properties by suppressing Akt/NF-κB signaling and the activation of mitogen-activated protein kinases (MAPKs), including p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, GM1 suppressed LPS-induced activation of transforming growth factor-β-activated kinase 1 (TAK1) and NADPH oxidase 2 (NOX2), upstream regulators of the IκBα/NF-κB and MAPK/AP-1 signaling pathways. GM1 also inhibited NOX-mediated reactive oxygen species (ROS) production and protected against LPS-induced MG6 cell death, suggesting an antioxidant role of GM1. In conclusion, GM1 exerts both antineuroinflammatory and antioxidative effects by inhibiting Akt, TAK1 and NOX2 activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.