Abstract
Among the pathological events associated with the dopaminergic neurodegeneration characteristic of Parkinson's disease (PD) are the accumulation of toxic forms of α-synuclein and microglial activation associated with neuroinflammation. Although numerous other processes may participate in the pathogenesis of PD, the two factors mentioned above may play critical roles in the initiation and progression of dopamine neuron degeneration in PD. In this study, we employed a slowly progressing model of PD using adeno-associated virus-mediated expression of human A53T α-synuclein into the substantia nigra on one side of the brain and examined the microglial response in the striatum on the injected side compared to the non-injected (control) side. We further examined the extent to which administration of the neuroprotective ganglioside GM1 influenced α-synuclein-induced glial responses. Changes in a number of microglial morphological measures (i.e., process length, number of endpoints, fractal dimension, lacunarity, density, and cell perimeter) were indicative of the presence of activated microglial and an inflammatory response on the injected side of the brain, compared to the control side. In GM1-treated animals, no significant differences in microglial morphology were observed between the injected and control striata. Follow-up studies showed that mRNA expression for several inflammation-related genes was increased on the A53T α-synuclein injected side vs. the non-injected side in saline-treated animals and that such changes were not observed in GM1-treated animals. These data show that inhibition of microglial activation and potentially damaging neuroinflammation by GM1 ganglioside administration may be among the many factors that contribute to the neuroprotective effects of GM1 in this model and possibly in human PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.