Abstract

This paper describes experimental study on the orientation dependence of GM-type pulse tube refrigerator with helium and neon as working gas. A pulse tube refrigerator generates refrigeration work with gas expansion by gas displacer in the pulse tube. The pulse tube is only filled with working gas and there exists secondary flow due to large temperature difference between cold-end and warm-end. The stability of secondary flow is affected by orientation of cold-head and thus cooling performance is deteriorated by gas mixing due to secondary flow. In this study, a single stage GM-type pulse tube with orifice valve as a phase control device is fabricated and tested. The fabricated pulse tube refrigerator is tested with two different working gases of helium and neon. First, optimal valve opening and operating frequency are determined with experimental results of no-load test. And then, the variation of no-load temperature as orientation angle of cold-head is measured for two different working gases. Effect of orientation dependence of cold-head as working gas is discussed with experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call