Abstract
Glyph as a powerful multivariate visualization technique is used to visualize data through its visual channels. To visualize 3D volumetric dataset, glyphs are usually placed on 2D surface, such as the slicing plane or the feature surface, to avoid occluding each other. However, the 3D spatial structure of some features may be missing. On the other hand, placing large number of glyphs over the entire 3D space results in occlusion and visual clutter that make the visualization ineffective. To avoid the occlusion, we propose a view-dependent interactive 3D lens that removes the occluding glyphs by pulling the glyphs aside through the animation. We provide two space deformation models and two lens shape models to displace the glyphs based on their spatial distributions. After the displacement, the glyphs around the user-interested region are still visible as the context information, and their spatial structures are preserved. Besides, we attenuate the brightness of the glyphs inside the lens based on their depths to provide more depth cue. Furthermore, we developed an interactive glyph visualization system to explore different glyph-based visualization applications. In the system, we provide a few lens utilities that allows users to pick a glyph or a feature and look at it from different view directions. We compare different display/interaction techniques to visualize/manipulate our lens and glyphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on visualization and computer graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.