Abstract

α-Keto acids may help prevent malnutrition in patients with chronic kidney disease (CKD), who consume protein-restricted diets, because they serve as amino acid sources without producing nitrogenous waste compounds. However, the physiological roles of α-keto acids, especially those derived from non-essential amino acids, remain unclear. In this study, we examined the effect of glyoxylic acid (GA), an α-keto acid metabolite derived from glycine, on myogenesis in C2C12 cells. Differentiation and mitochondrial biogenesis were used as myogenesis indicators. Treatment with GA for 6 d resulted in an increase in the expression of differentiation markers (myosin heavy chain II and myogenic regulatory factors), mitochondrial biogenesis, and intracellular amounts of amino acids (glycine, serine, and alanine) and their metabolites (citric acid and succinic acid). In addition, GA treatment suppressed the 2.5-µM dexamethasone (Dex)-induced increase in mRNA levels of ubiquitin ligases (Trim63 and Fbxo32), muscle atrophy markers. These results indicate that GA promotes myogenesis, suppresses Dex-induced muscle atrophy, and is metabolized to amino acids in muscle cells. Although further in vivo experiments are needed, GA may be a beneficial nutrient for ameliorating the loss of muscle mass, strength, and function in patients with CKD on a strict dietary protein restriction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.