Abstract

High-mobility group box 1 (HMGB1) acts as an early mediator of inflammation and organ damage in hepatic ischemia-reperfusion (I/R) injury. Glycyrrhizin is a natural anti-inflammatory and antiviral triterpene in clinical use. The purpose of this study was to investigate the effect of glycyrrhizin on liver injury caused by I/R and production of HMGB1 by Kupffer cells in rats. In the first test period, rats were given saline or glycyrrhizin 20 min before segmental hepatic warm I/R. Serum alanine aminotransferase and HMGB1 levels and hepatic histopathological findings were evaluated after I/R. Furthermore, expression of HMGB1 in the liver was assessed by immunohistochemical staining after I/R. Kupffer cells were isolated by collagenase digestion and differential centrifugation, and production of HMGB1 was assessed. In another set of experiments, the effect of inhibition of Kupffer cells by injection of liposome-entrapped dichloromethylene diphosphonate (lipo-MDP) on liver injury and expression of HMGB1 were investigated after I/R. Liver injury was prevented in the glycyrrhizin group compared with the control group. Furthermore, serum HMGB1 levels were also significantly blunted in the glycyrrhizin group compared with the control group. Cells expressing HMGB1 were detected in the hepatic sinusoid by immunohistochemistry and recognized morphologically as Kupffer cells. Furthermore, the expression of HMGB1 was reduced in the glycyrrhizin group compared with the control group. Production of HMGB1 was reduced in Kupffer cells isolated from the glycyrrhizin group compared with the control group. It is noteworthy that treatment with lipo-MDP significantly blunted serum HMGB1 levels and prevented liver injury after I/R. These results suggest that glycyrrhizin has the therapeutic potential to prevent warm I/R-induced injury during hepato-biliary surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.