Abstract

Glycyrrhizin is known to exert antiviral and anti-inflammatory effects. Here, the effects of an approved parenteral glycyrrhizin preparation (Stronger Neo-Minophafen C) were investigated on highly pathogenic influenza A H5N1 virus replication, H5N1-induced apoptosis, and H5N1-induced pro-inflammatory responses in lung epithelial (A549) cells. Therapeutic glycyrrhizin concentrations substantially inhibited H5N1-induced expression of the pro-inflammatory molecules CXCL10, interleukin 6, CCL2, and CCL5 (effective glycyrrhizin concentrations 25 to 50 µg/ml) but interfered with H5N1 replication and H5N1-induced apoptosis to a lesser extent (effective glycyrrhizin concentrations 100 µg/ml or higher). Glycyrrhizin also diminished monocyte migration towards supernatants of H5N1-infected A549 cells. The mechanism by which glycyrrhizin interferes with H5N1 replication and H5N1-induced pro-inflammatory gene expression includes inhibition of H5N1-induced formation of reactive oxygen species and (in turn) reduced activation of NFκB, JNK, and p38, redox-sensitive signalling events known to be relevant for influenza A virus replication. Therefore, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease.

Highlights

  • Pathogenic H5N1 influenza A viruses are considered to be potential influenza pandemic progenitors [1,2,3,4,5,6]

  • Glycyrrhizin 200 mg/ml did not affect A549 cell viability but clearly decreased cytopathogenic effect (CPE) formation in A549 cells infected with the H5N1 influenza strain A/Thailand/1(Kan-1)/04 at MOIs of 0.01, 0.1 or 1 (Figure 1A)

  • Staining of A549 cells for influenza A nucleoprotein 24 h after infection with strain H5N1 A/Thailand/1(Kan-1)/04 indicated that glycyrrhizin 200 mg/ml significantly reduces the number of influenza A nucleoprotein positive cells (Figure 1B)

Read more

Summary

Introduction

Pathogenic H5N1 influenza A viruses are considered to be potential influenza pandemic progenitors [1,2,3,4,5,6]. Antiviral therapy for influenza A viruses including highly pathogenic H5N1 virus strains remains of great importance for the first line defense against the virus [1,2,3,4,6,9]. The majority of H3N2 viruses and a great proportion of H1N1 viruses in humans are considered to be amantadine- and rimantadine-resistant [10,11,12,13]. Preliminary data from the United States predict a further rise for the 2008/2009 season, possibly resulting in more than 90% of the circulating H1N1 strains to be oseltamivir resistant [14]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.