Abstract

Glycyrrhetinic acid (GA) derivatives have been used to implicate gap junctions in vasorelaxation attributed to endothelium-derived hyperpolarizing factor (EDHF). The aim of this study was to assess whether GA compounds affect endothelial cell hyperpolarization. Membrane potentials were recorded from dye-identified endothelial and smooth muscle cells of guinea pig coronary and rat mesenteric arteries. GA derivatives had varied effects on the resting membrane potential: depolarization, hyperpolarization, or no effect, depending on the artery. 18alpha-GA (50 microM) had a small variable effect on ACh-induced hyperpolarizations in endothelial cells. 18beta-GA (30 microM) and carbenoxolone (100 microM) significantly reduced ACh-induced hyperpolarizations in both endothelial and smooth muscle cells. Smooth muscle action potentials in rat tail arteries were smaller and slower in the presence of 18beta-GA. Nerve-induced excitatory junction potentials were inhibited by 18beta-GA and carbenoxolone, whereas the time course of their decay initially increased and then decreased. In conclusion, the GA compounds had a range of effects. Their inhibition of the EDHF hyperpolarization and relaxation in the smooth muscle may stem from the inhibition of endothelial cell hyperpolarization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call