Abstract
The pathogenesis of bilirubin encephalopathy seems to result from accumulation of unconjugated bilirubin (UCB) within the brain. We have recently demonstrated that UCB causes astroglial release of proinflammatory cytokines and glutamate, as well as cell death. The bile acid glycoursodeoxycholic acid (GUDCA) and the anti-inflammatory cytokine interleukin (IL)-10 have been reported to modulate inflammation and cell survival. In this study we investigated the effect of these therapeutic agents on the astroglial response to UCB. Only GUDCA prevented UCB-induced astroglial death. The secretion of tumor necrosis factor-alpha (TNF-alpha) and IL-1beta elicited by UCB in astrocytes was reduced in the presence of GUDCA and IL-10, whereas the suppression of IL-6 was only counteracted by GUDCA. Neither GUDCA nor IL-10 modulated the accumulation of extracellular glutamate. Additionally, IL-10 markedly inhibited UCB-induced nuclear factor-kappaB nuclear translocation and cytokine mRNA expression, whereas GUDCA only prevented TNF-alpha mRNA expression. Moreover, GUDCA inhibited TNF-alpha- and IL-1beta-converting enzymes, preventing the maturation of these cytokines and their consequent release. Collectively, this study shows that IL-10 action is restricted to UCB-induced release of TNF-alpha and IL-1beta from the astrocytes, whereas GUDCA presents a more ubiquitous action on the astroglial reactivity to UCB. Hence, GUDCA may have potential benefits over an IL-10 therapeutic approach in reducing UCB-induced astrocyte immunostimulation and death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Neuropathology and Experimental Neurology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.