Abstract

Glycosyltransferases (GTs) are powerful tools for the synthesis of complex and biologically-important carbohydrates. Wild-type GTs may not have all the properties and functions that are desired for large-scale production of carbohydrates that exist in nature and those with non-natural modifications. With the increasing availability of crystal structures of GTs, especially those in the presence of donor and acceptor analogues, crystal structure-guided rational design has been quite successful in obtaining mutants with desired functionalities. With current limited understanding of the structure-activity relationship of GTs, directed evolution continues to be a useful approach for generating additional mutants with functionality that can be screened for in a high-throughput format. Mutating the amino acid residues constituting or close to the substrate-binding sites of GTs by structure-guided directed evolution (SGDE) further explores the biotechnological potential of GTs that can only be realized through enzyme engineering. This mini-review discusses the progress made towards GT engineering and the lessons learned for future engineering efforts and assay development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.