Abstract

The role of N-linked glycosylation in the functional properties of gastric H+,K+-ATPase has been examined with tunicamycin and I-deoxymannojirimycin, inhibitors in glycoprotein biosynthesis and glycoprotein processing respectively. Tunicamycin completely abolished both K+-stimulated and 3-(cyanomethyl)-2-methyl-8-(phenylmethoxy)-imidazo[1,2a]pyridine (SCH 28080)-sensitive ATPase activity and SCH 28080-sensitive phosphorylation capacity. The expression level of both H+,K+-ATPase subunits remained unaffected. 1-Deoxymannojirimycin clearly affected the structure of the N-linked oligosaccharide moieties without affecting specific phosphorylation capacity. Purification of the functional recombinant enzyme from non-functional H+,K+-ATPase subunits coincided with purification of glycosylated beta-subunits and not of non-glycosylated beta-subunits. Transport of the H+,K+-ATPase beta-subunit to the plasma membrane but not its ability to assemble with the alpha-subunit dependent on N-glycosylation events. We conclude that the acquisition, but not the exact structure, of N-linked oligosaccharide moieties, is essential for biosynthesis of functional gastric H+,K+-ATPase in insect cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.